Un estudio encuentra la clave para la regeneración nerviosa

(13/9/16) – Investigadores de la Universidad de Wisconsin-Madison han descubierto un interruptor que redirige células auxiliares en el sistema nervioso periférico en el ‘modo de reparación’, una forma que restaura los axones dañados.

Los axones son fibras largas sobre las neuronas que transmiten los impulsos nerviosos. El sistema nervioso periférico, la red de señalización fuera del cerebro y la médula espinal, tiene cierta capacidad para regenerar axones destruidos, pero la reparación es lenta y, a menudo, insuficiente.

El nuevo estudio sugiere tácticas que puedan desencadenar o acelerar esta regeneración natural y ayudar a la recuperación después de una lesión física, dice John Svaren, profesor de ciencias biológicas comparativas de la Escuela de Medicina Veterinaria en la Universidad de Wisconsin-Madison. El hallazgo también podría aplicarse a anomalías genéticas tales como la enfermedad de Charcot-Marie-Tooth o a los nervios dañados por la diabetes.

Svaren, autor principal de un informe publicado el 30 de agosto en The Journal of Neuroscience, estudió cómo las células de Schwann, que abrazan a los axones en el sistema nervioso periférico, se transforman para jugar un papel mucho más activo e “inteligente” después de la lesión.

Las células de Schwann crean la vaina de mielina que acelera la transmisión de los impulsos nerviosos. En el ‘modo de reparación’, las células de Schwann forman un equipo de corrección que añade limpieza y estimulación de la regeneración del nervio para el trabajo habitual de aislamiento.

Svaren y su estudiante graduado Joseph Ma compararon la activación de los genes en las células de Schwann en ratones con axones intactos o cortados. “Vimos un conjunto de genes latentes convertirse en activos, pero solo después de la lesión”, dice Svaren. “Y estos ponen en marcha un programa que coloca a las células de Schwann en un modo de reparación con el que se realizan varios trabajos que el axón necesita para volver a crecer”, agrega.

En el modo de reparación, pero no en el normal, las células de Schwann comienzan una limpieza, que ayuda a disolver la mielina, que es esencial para el funcionamiento apropiado, pero irónicamente, disuade de regeneración después de la lesión. “Si invita a las células de Schwann para una fiesta”, explica Svaren, “van a limpiar las botellas y lavar los platos antes de irse de la casa”.

Esta limpieza debe ocurrir dentro de días de la lesión, dice Svaren, que dirige el núcleo de neurociencia celular y molecular en el Centro Waisman en el campus de la Universidad de Madison-Wisconsin.

Las células de Schwann también secretan señales que invocan a las células de la sangre para ayudar a la limpieza, y a trazar un camino para que el axón vuelva a crecer. Finalmente, vuelven a la función de aislante al crecer una vaina de mielina de reemplazo en el axón regenerado.

Inesperadamente, la transición de las células de Schwann hacia el modo de reparación no implicó una reversión a una forma más primitiva, sino que se basa en un cambio en la regulación de sus genes. “Con casi todos las otras respuestas a una lesión del sistema nervioso, especialmente en el cerebro, se cree que requieren de las células madre para la repoblación celular, pero no existen células madre aquí”, señala Svaren. “Las células de Schwann se reprograman a sí mismas para configurar el programa de reparación de accidentes. Estamos comenzando a verlas como jugadores activos con doble función en protección y regeneración del axón, y estamos explorando los factores que determinan el inicio y la eficacia del programa de reparación de accidentes”, añade.

Después de que fuese descifrado el genoma humano, la epigenética (el estudio de la regulación de genes) se ha puesto a la vanguardia con la comprensión de que los genes no importan mucho hasta que se encienden, y que los interruptores genéticos son la razón fundamental por la cual una célula de piel no parece una célula nerviosa, y unas células nerviosas funcionan de manera diferente que la célula de un glóbulo blanco.

En la epigenética, así como en la biología u otras partes, los procesos a menudo se regulan a través de un equilibrio entre las señales de ‘ir’ y ‘parar’. En la transición de células de Schwann, Svaren y Ma identificaron un sistema llamado PRC2 que por lo general silencia el programa de reparación. “Esta vía asciende a un interruptor de encendido y apagado que es normalmente apagado y queremos saber cómo encenderlo para iniciar el proceso de reparación”, sostiene Svaren.

El nuevo estudio sugiere tácticas que pueden desencadenar o acelerar esta regeneración natural y ayudar a la recuperación después de una lesión física.

La naturaleza del sistema de silenciamiento de genes de alto nivel sugirió fármacos que podrían eliminar la marca de silenciamiento de los genes en cuestión, y Svaren dice que ha identificado una enzima que puede “quitar los frenos y activar deliberadamente el programa de reparación cuando sea necesario en respuesta a una lesión”.

Incluso si las pruebas de drogas son prometedoras, se necesitarán años de experimentos antes de que el sistema pueda ser probado en personas. Además, como reconoce Svaren, “muchos factores determinan qué tan bien un axón puede regenerarse. No estoy diciendo que esta única vía podría conducir a una cura para todo, pero esperamos que este sea un factor importante”.

Svaren dice que no está claro cómo el hallazgo actual sobre los nervios periféricos se refiere a un daño en el cerebro y la médula espinal, donde un tipo diferente de células se preocupa por las neuronas. Hay algunas similitudes, sin embargo. En la esclerosis múltiple, por ejemplo, la limpieza debe preceder a la sustitución de la mielina dañada.

En última instancia, el estudio podría abrir una nueva puerta en la regeneración, incluso de un sector clave del sistema nervioso. “Hemos pensado en la célula de Schwann como una entidad estática que estaba allí para hacer la mielina, pero tienen este programa latente, con el que se convierten en los primeros en responder y poner en marcha muchas acciones que son necesarias para la regeneración del axón”, concluye Svaren.

 

Artículo original en inglés: http://www.publicnow.com/view/7D32C6141690534C084F773DFB61FE739507F716?2016-09-13-18%3A31%3A36+01%3A00-xxx8935

Versión en español: Ana Varco pata AMANDOS

 

 

 

 

 

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s